New Keynesian Model Nominal Wage Rigidities à la Calvo

Damian Romero*

December, 2020

1 One-sector model with representative agent

1.1 Optimal wage

The problem of the union is

$$
\max _{W_{t}^{*}} \mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U\left(C_{t+k \mid t}, N_{t+k \mid t}\right),
$$

subject to

$$
\begin{align*}
N_{t+k \mid t} & =\left(\frac{W_{t}^{*}}{W_{t+k}}\right)^{-\varepsilon_{w}} N_{t+k} \tag{1}\\
P_{t+k} C_{t+k \mid t}+Q_{t+k} B_{t+k} & =B_{t+k-1}+W_{t}^{*} N_{t+k \mid t}+D_{t+k}+T_{t+k} . \tag{2}
\end{align*}
$$

Even though we are interested in determining the optimal nominal wage W_{t}^{*}, we can re-write the constraints (1) and (2) such that every nominal price is in terms of the numeraire: the price of consumption, P_{t}. These restrictions read as

$$
\begin{align*}
N_{t+k \mid t} & =\left(\frac{W_{t}^{*}}{P_{t}} \frac{P_{t}}{P_{t+k}} \frac{P_{t+k}}{W_{t+k}}\right)^{-\varepsilon_{w}} N_{t+k} \\
& =\left(\frac{W_{t}^{*}}{P_{t}}\right)^{-\varepsilon_{w}}\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k} \tag{3}\\
C_{t+k \mid t} & =\frac{B_{t+k-1}-Q_{t+k} B_{t+k}+W_{t}^{*} N_{t+k \mid t}+D_{t+k}+T_{t+k}}{P_{t+k \mid t}} \\
& =\frac{B_{t+k-1}-Q_{t+k} B_{t+k}+D_{t+k}+T_{t+k}}{P_{t+k \mid t}}+\frac{W_{t}^{*}}{P_{t}} \frac{P_{t}}{P_{t+k}} N_{t+k \mid t} \\
& =\frac{B_{t+k-1}-Q_{t+k} B_{t+k}+D_{t+k}+T_{t+k}}{P_{t+k \mid t}}+\frac{W_{t}^{*}}{P_{t}} \frac{P_{t}}{P_{t+k}}\left(\frac{W_{t}^{*}}{P_{t}}\right)^{-\varepsilon_{w v}}\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w w}} N_{t+k} \\
& =\frac{B_{t+k-1}-Q_{t+k} B_{t+k}+D_{t+k}+T_{t+k}}{P_{t+k \mid t}}+\left(\frac{W_{t}^{*}}{P_{t}}\right)^{1-\varepsilon_{w}}\left(\frac{P_{t+k}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k} . \tag{4}
\end{align*}
$$

[^0]Then, the optimization problem is unrestricted because we can replace for consumption and labor from equations (3) and (4).
The first order condition is

$$
\begin{array}{r}
\mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k}\left\{U_{C, t+k}\left(1-\varepsilon_{w}\right)\left(\frac{W_{t}^{*}}{P_{t}}\right)^{-\varepsilon_{w}} \frac{1}{P_{t}}\left(\frac{P_{t+k}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}\right. \\
\left.-U_{N, t+k} \varepsilon_{w}\left(\frac{W_{t}^{*}}{P_{t}}\right)^{-\varepsilon_{w}-1} \frac{1}{P_{t}}\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}\right\}=0 \\
\mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k}\left\{U_{C, t+k}\left(\frac{W_{t}^{*}}{P_{t}}\right)\left(\frac{P_{t+k}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}+\left(\frac{\varepsilon_{w}}{\varepsilon_{w}-1}\right) U_{N, t+k}\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}\right\}=0 \\
\mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U_{C, t+k}\left\{\left(\frac{W_{t}^{*}}{P_{t}}\right)\left(\frac{P_{t+k}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}-\left(\frac{\varepsilon_{w}}{\varepsilon_{w}-1}\right)\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k} M R S_{t+k}\right\}=0,
\end{array}
$$

with $M R S_{t+k}=U_{N, t+k} / U_{C, t+k}$.
This can be also written as

$$
\begin{gathered}
\left(\frac{W_{t}^{*}}{P_{t}}\right) \underbrace{\mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U_{C, t+k}\left\{\left(\frac{P_{t+k}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k}\right\}}_{F_{t}^{w}}= \\
\left(\frac{\varepsilon_{w}}{\varepsilon_{w}-1}\right) \underbrace{\mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U_{C, t+k}\left\{\left(\frac{P_{t+k}}{P_{t}} \frac{W_{t+k}}{P_{t+k}}\right)^{\varepsilon_{w}} N_{t+k} M R S_{t+k}\right\}}_{S_{t}^{w}}
\end{gathered}
$$

Under $U(C, N)=\frac{C^{1-\sigma}-1}{1-\sigma}-\frac{N^{1+\varphi}}{1+\varphi}$ we have $U_{C}=C^{-\sigma}, U_{N}=N^{\varphi}$ and $M R S=C^{\sigma} N^{\varphi}$. Working every expression we get

$$
\begin{aligned}
F_{t}^{w} & =\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w}} N_{t} C_{t}^{-\sigma}+\theta_{w} \beta \mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U_{C, t+k+1}\left\{\left(\frac{P_{t+k+1}}{P_{t+1}} \frac{P_{t+1}}{P_{t}}\right)^{\varepsilon_{w}-1}\left(\frac{W_{t+k+1}}{P_{t+k+1}}\right)^{\varepsilon_{w}} N_{t+k+1}\right\} \\
& =\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w}} N_{t} C_{t}^{-\sigma}+\theta_{w} \beta \mathbb{E}_{t}\left[\Pi_{t+1}^{\varepsilon_{w}-1} F_{t+1}^{w}\right] \\
S_{t}^{w} & =\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w}} N_{t}^{1+\varphi}+\theta_{w} \beta \mathbb{E}_{t} \sum_{k=0}^{\infty}\left(\theta_{w} \beta\right)^{k} U_{C, t+k+1}\left\{\left(\frac{P_{t+k+1}}{P_{t+1}} \frac{P_{t+1}}{P_{t}} \frac{W_{t+k+1}}{P_{t+k+1}}\right)^{\varepsilon_{w}} N_{t+k+1} M R S_{t+k+1}\right\} \\
& =\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w}} N_{t}^{1+\varphi}+\theta_{w} \beta \mathbb{E}_{t}\left[\Pi_{t+1}^{\varepsilon_{w}} S_{t+1}^{w}\right] .
\end{aligned}
$$

Then the optimal (real) wage is

$$
\frac{W_{t}^{*}}{P_{t}}=\left(\frac{\varepsilon_{w}}{\varepsilon_{w}-1}\right) \frac{S_{t}^{w}}{F_{t}^{w}} .
$$

Note that when wages are fully flexible $S_{t}^{w}=\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w v}} N_{t}^{1+\varphi}$ and $F_{t}^{w}=\left(\frac{W_{t}}{P_{t}}\right)^{\varepsilon_{w w}} N_{t} C_{t}^{-\sigma}$ so $\frac{W_{t}^{*}}{P_{t}}=\left(\frac{\varepsilon_{w}}{\varepsilon_{w w}-1}\right) C_{t}^{\sigma} N_{t}^{\varphi}=$ $\left(\frac{\varepsilon_{w}}{\varepsilon_{w}-1}\right) M R S_{t}$.

1.2 Wage evolution

Real wages $\left(w_{t} \equiv W_{t} / P_{t}\right)$ evolve as $w_{t}=w_{t-1} \frac{\Pi_{w, t}}{\Pi_{t}}$.
Given the Calvo assumption, wages evolve as

$$
\begin{aligned}
W_{t} & =\left[\theta_{w} W_{t-1}^{1-\varepsilon_{w}}+\left(1-\theta_{w}\right)\left(W_{t}^{*}\right)^{1-\varepsilon_{w}}\right]^{\frac{1}{1-\varepsilon_{w}}} \\
1 & =\theta_{w}\left(\frac{W_{t-1}}{W_{t}}\right)^{1-\varepsilon_{w}}+\left(1-\theta_{w}\right)\left(\frac{W_{t}^{*}}{W_{t}}\right)^{1-\varepsilon_{w}} \\
1 & =\theta_{w}\left(\Pi_{w, t+1}\right)^{\varepsilon_{w}-1}+\left(1-\theta_{w}\right)\left(\frac{W_{t}^{*}}{P_{t}} \frac{P_{t}}{W_{t}}\right)^{1-\varepsilon_{w}} \\
1 & =\theta_{w}\left(\Pi_{w, t+1}\right)^{\varepsilon_{w}-1}+\left(1-\theta_{w}\right)\left(w_{t}^{*}\right)^{1-\varepsilon_{w}} w_{t}^{\varepsilon_{w}-1} .
\end{aligned}
$$

Finally, the price dispersion evolves as

$$
\begin{aligned}
\Delta_{w, t} & =\int_{0}^{1}\left(\frac{W_{t}(i)}{W_{t}}\right)^{-\varepsilon_{w}} d i=\int_{0}^{\theta_{w}}\left(\frac{W_{t-1}(i)}{W_{t}}\right)^{-\varepsilon_{w}} d i+\int_{\theta_{w}}^{1}\left(\frac{W_{t}^{*}}{W_{t}}\right)^{-\varepsilon_{w w}} d i \\
& =\int_{0}^{\theta_{w}}\left(\frac{W_{t-1}(i)}{W_{t-1}} \frac{W_{t-1}}{W_{t}}\right)^{-\varepsilon_{w w}} d i+\left(1-\theta_{w}\right)\left(\frac{W_{t}^{*}}{P_{t}} \frac{P_{t}}{W_{t}}\right)^{-\varepsilon_{w}} \\
& =\theta_{w} \Pi_{w, t}^{\varepsilon_{w}} \Delta_{w, t-1}+\left(1-\theta_{w}\right)\left(w_{t}^{*}\right)^{-\varepsilon_{w} w} w_{t}^{\varepsilon_{w}} .
\end{aligned}
$$

[^0]: *Email: dromeroc@bcentral.cl

