Exact hat algebra

Damian Romero*

January, 2020

Summary This note summarizes the exact hat algebra technique using the Armington model of trade.

Baseline equations and definitions Consider a world with N countries, which are indexed by i and j. L_{i} is the labor endowment, w_{i} the endogenous labor wage. Income is given by $Y_{i}=w_{i} L_{i}$. Trade flows are given by $X_{i j}$. Parameters $\chi_{i}, \tau_{i j}$ and ϵ are a productivity shifter, trade costs and elasticity of substitution, respectively. Finally define sales shares $\gamma_{i j}=X_{i j} / Y_{i}$.
The two relevant equations of this model are the market clearing condition and the gravity equations

$$
\begin{align*}
w_{i} L_{i} & =\sum_{j=1}^{N} \lambda_{i j} w_{j} L_{j} \tag{1}\\
\lambda_{i j} & =\frac{\chi_{i}\left(\tau_{i j} w_{i}\right)^{-\epsilon}}{\sum_{l=1}^{N} \chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}} . \tag{2}
\end{align*}
$$

Suppose a variable x in the initial equilibrium. After a change in fundamentals, such variable is now x^{\prime}. Define the hat-form version of variable x as $\widehat{x} \equiv x^{\prime} / x$. This is, the ratio between the changed variable and the original one. The goal is to write the original system of equations in hat-form, which can be done as follows.

1. Market clearing

After shock this equations reads as

$$
w_{i}^{\prime} L_{i}^{\prime}=\sum_{j=1}^{N} \lambda_{i j}^{\prime} w_{j}^{\prime} L_{j}^{\prime}
$$

Dividing (1^{\prime}) with (1)

$$
\begin{aligned}
\frac{w_{i}^{\prime} L_{i}^{\prime}}{w_{i} L_{i}} & =\widehat{w}_{i} \widehat{L}_{i}=\frac{\sum_{j=1}^{N} \lambda_{i j}^{\prime} w_{j}^{\prime} L_{j}^{\prime}}{\sum_{j=1}^{N} \lambda_{i j} w_{j} L_{j}}=\frac{\sum_{j=1}^{N} X_{i j}^{\prime}}{\sum_{j=1}^{N} \lambda_{i j} w_{j} L_{j}} \\
& =\frac{\sum_{j=1}^{N} X_{i j}^{\prime}}{w_{i} L_{i}}=\sum_{j=1}^{N} \frac{X_{i j}}{w_{i} L_{i}} \frac{X_{i j}^{\prime}}{X_{i j}}=\sum_{j=1}^{N} \gamma_{i j} \widehat{X}_{i j}
\end{aligned}
$$

[^0]2. Gravity equation

After a shock, this equation reads (in general form) as

$$
\lambda_{i j}^{\prime}=\frac{\chi_{i}^{\prime}\left(\tau_{i j}^{\prime} w_{i}^{\prime}\right)^{-\epsilon}}{\sum_{l=1}^{N} \chi_{l}^{\prime}\left(\tau_{l j}^{\prime} w_{l}^{\prime}\right)^{-\epsilon}}
$$

Dividing (2') with (2)

$$
\begin{aligned}
\frac{\lambda_{i j}^{\prime}}{\lambda_{i j}} & =\widehat{\lambda}_{i j}=\widehat{\chi}_{i}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}\left(\frac{\sum_{l=1}^{N} \chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}}{\sum_{l=1}^{N} \chi_{l}^{\prime}\left(\tau_{l j}^{\prime} w_{l}^{\prime}\right)^{-\epsilon}}\right) \\
& =\widehat{\chi}_{i}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}\left(\frac{\sum_{l=1}^{N} \chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}}{\chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}}\right)\left(\frac{\chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}}{\sum_{l=1}^{N} \chi_{l}^{\prime}\left(\tau_{l j}^{\prime} w_{l}^{\prime}\right)^{-\epsilon}}\right) \\
& =\widehat{\chi}_{i}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}\left(\frac{1}{\lambda_{l j}}\right)\left(\frac{1}{\sum_{l=1}^{N} \frac{\chi_{l}^{\prime}\left(\tau_{l j}^{\prime} w_{w_{1}^{\prime}}\right)^{-\epsilon}}{\chi_{l}\left(\tau_{l j} w_{l}\right)^{-\epsilon}}}\right) \\
& =\frac{\widehat{\chi}_{i}\left(\hat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}}{\sum_{l=1}^{N} \lambda_{l j} \widehat{\chi}_{l}\left(\widehat{\tau}_{l j} \widehat{w}_{l}\right)^{-\epsilon}}
\end{aligned}
$$

Summarizing, we have the following system of equations

$$
\begin{align*}
\widehat{w}_{i} \widehat{L}_{i} & =\sum_{j=1}^{N} \gamma_{i j} \widehat{X}_{i j} \tag{3}\\
\widehat{\lambda_{i j}} & =\frac{\widehat{\chi}_{i}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}}{\sum_{l=1}^{N} \lambda_{l j} \widehat{\chi}_{l}\left(\widehat{\tau}_{l j} \widehat{w}_{l}\right)^{-\epsilon}} . \tag{4}
\end{align*}
$$

Suppose we are interested in the effect that a trade cost shock ($\widehat{\tau}_{i j}$) has over wages $\left(\widehat{w}_{i}\right)$ and trade $\left(\widehat{\lambda}_{i j}\right)$. By assumption, all other variables remain constant at the initial equilibrium, so from (3) we get $\widehat{w}_{i}=\sum_{j=1}^{N} \gamma_{i j} \widehat{X}_{i j}=\sum_{j=1}^{N} \gamma_{i j} \widehat{\lambda}_{i j} \widehat{w}_{j}$. Replacing the gravity equation we get

$$
\widehat{w}_{i}=\sum_{j=1}^{N} \gamma_{i j} \widehat{w}_{j}\left(\frac{\widehat{\chi}_{i}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}}{\sum_{l=1}^{N} \lambda_{l j} \widehat{\chi}_{l}\left(\widehat{\tau}_{l j} \widehat{w}_{l}\right)^{-\epsilon}}\right)=\sum_{j=1}^{N} \frac{\gamma_{i j} \widehat{w}_{j}\left(\widehat{\tau}_{i j} \widehat{w}_{i}\right)^{-\epsilon}}{\sum_{l=1}^{N} \lambda_{l j}\left(\widehat{\tau}_{l j} \widehat{w}_{l}\right)^{-\epsilon}} .
$$

Therefore, using data to pin-down ϵ and the initial equilibrium shares $\lambda_{i j}$ and $\gamma_{i j}$, we can solve the previous $N \times N$ system of equations to get \widehat{w}_{i}. With this, we can recover $\widehat{\lambda}_{i j}$ from the gravity equation.

[^0]: *Email: dromeroc@bcentral.cl

