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1 A direct derivation from AB (2008)

Summary Consider a two-country model indexed by i. The representative household derives utility
from an aggregate consumption (final) good c;. this is composed by a continuum of sectoral goods indexed
by j, which are combined in a CES function. At the same time, each sector is composed by k = 1,...,K
firms that produce using only labor. In this note, I derive the markup equation for firms presented in the

paper.

Final consumption This good is produced using output from sectors indexed by j
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From the expenditure minimization problem, we can get a demand for each sector and the ideal price

index for the final good
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Sectoral good Each sectoral good is produced by combining the product of a finite number of firms
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where g;jx denotes sales in country i of firm k in sector j. From this problem, get a demand for firms and
the ideal price index for the sectoral good as
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Firm’s problem Each firm produces with a constant returns technology using only labor. Therefore, the
marginal cost of a firm k in country i, sector j is W;/ (Aizjk), where W is the wage (common to all firms
in the country), A is a country-aggregate productivity shock, and z is a firm-sector specific productivity
shock. In what follows, this terms is just MCij. A firm k must choose its price and quantity produced,
taking as given productivity, wage, the rest of quantities produced, aggregate consumption/price. This is,
it must solve
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subject to (1) and (3).

Note that the combined demand (equations (1) and (3)) can be written as P;j; = Pi(cyﬂ) (qfl/p ) (yvp 71/’7).
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Replacing demand in the objective function, gets the following first order condition with respect to g;j
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By replacing the partial derivative of sectoral output with respect to firm k’s output, and the demand for
sectors, the previous equation can be written as
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condition can be simplified to
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= sjjx, which is the market share of firm k in its sector. With this, the first order
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which can be shown is the same as equation (15) in the paper.

2 An alternative derivation from Heise et.al (2022)

Consider an economy composed by (a finitite number of) S sectors indexed by s. Production is carried
out by a competitive firm combining output from a continuum of industries k € [0, 1], with a technology!
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The problem of this producer generates the following demand and price index
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Each industry is populated by finite number of firms, N;(k), which are indexed by i. (In what follows,
N; (k) = N for simplicity.) The industry-specific aggregator takes the form
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Therefore, the demand for variety (k, i) and the price index are
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Each firm produces with a Cobb-Douglas technology y = AI*k!~*, such that the marginal cost is

cs(k, i) = %w"‘rl_“.

1“The missing inflation puzzle: The role of the wage-price pass-through” by Sebastian Heise, Fatih Karahan and Aysegul
Sahin. See paper at https://www.nber.org/system/files/working_papers/w27663/w27663.pdf.
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Market structure and demand elasticity. The key assumption, as in Atkenson and Burstein (2008), is
that varieties are more substitutible across firms in the same industry than across industries, 7 > o > 1.
Firms compete under Bertrand competition, taking as given the prices chosen by other firms when setting
their price, and taking as given input costs. Since there is only a finite number of firms, each firm takes
into account the effect of its price setting on the price index p; (k).

Define the effective demand elasticity for a firm as
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From the definition of the price index

N e ' dlogps(k) — ps(k, i)™
Wlog (;eXp[(l 1)1 gm(kl)]) = dlog ps(k,i) — YN | pa(k, )=

On the other hand, define the market share of a firm as ¢ (k, i) = ps(k,i)ys(k, i)/ (Xo—1 ps(k,i")ys(k,i")).
Replacing the effective demand in the latter expression, we have
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Therefore, the effective demand elasticity can be written as
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Thus, the firm’s demand elasticity is a weighted average of the within-industry and across-industry

elasticities of substitution.

Price setting. The firm’s profix maximization problem is
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The first-order condition reads as
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Note, however, that s& l)) = ( :((kkl)))ﬂ and ¢;(k,i) = (p;Fé(];l))) 7]. Replacing in the first-order condition

and re-ordering
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