Derivation of Atkenson and Burstein (2008)

Damian Romero*

February, 2022

1 A direct derivation from AB (2008)

Summary Consider a two-country model indexed by i. The representative household derives utility from an aggregate consumption (final) good c_{i}. this is composed by a continuum of sectoral goods indexed by j, which are combined in a CES function. At the same time, each sector is composed by $k=1, \ldots, K$ firms that produce using only labor. In this note, I derive the markup equation for firms presented in the paper.

Final consumption This good is produced using output from sectors indexed by j

$$
c_{i}=\left[\int_{0}^{1} y_{i j}^{1-1 / \eta} d j\right]^{\eta /(\eta-1)} .
$$

From the expenditure minimization problem, we can get a demand for each sector and the ideal price index for the final good

$$
\begin{align*}
\frac{P_{i j}}{P_{i}} & =\left(\frac{y_{i j}}{c_{i}}\right)^{-1 / \eta} \tag{1}\\
P_{i} & =\left[\int_{0}^{1} P_{i j}^{1-\eta} d j\right]^{1 /(1-\eta)}
\end{align*}
$$

Sectoral good Each sectoral good is produced by combining the product of a finite number of firms

$$
\begin{equation*}
y_{i j}=\left[\sum_{k=1}^{K} q_{i j k}^{(\rho-1) / \rho}\right]^{\rho /(\rho-1)}, \tag{2}
\end{equation*}
$$

where $q_{i j k}$ denotes sales in country i of firm k in sector j. From this problem, get a demand for firms and the ideal price index for the sectoral good as
*Email: dromeroc@bcentral.cl

$$
\begin{align*}
\frac{P_{i j k}}{P_{i j}} & =\left(\frac{q_{i j k}}{y_{i j}}\right)^{-1 / \rho} \tag{3}\\
P_{i j} & =\left[\sum_{k=1}^{K} P_{i j k}^{1-\rho}\right]^{1 /(1-\rho)}
\end{align*}
$$

Firm's problem Each firm produces with a constant returns technology using only labor. Therefore, the marginal cost of a firm k in country i, sector j is $W_{i} /\left(A_{i} z_{j k}\right)$, where W is the wage (common to all firms in the country), A is a country-aggregate productivity shock, and z is a firm-sector specific productivity shock. In what follows, this terms is just $M C_{i j k}$. A firm k must choose its price and quantity produced, taking as given productivity, wage, the rest of quantities produced, aggregate consumption/price. This is, it must solve

$$
\max _{P_{i j k}, q_{i j k}} P_{i j k} q_{i j k}-q_{i j k} M C_{i j k}
$$

subject to (1) and (3).
Note that the combined demand (equations (1) and (3)) can be written as $P_{i j k}=P_{i}\left(c_{i}^{1 / \eta}\right)\left(q_{i j k}^{-1 / \rho}\right)\left(y_{i j}^{1 / \rho-1 / \eta}\right)$. For convenience, first note

$$
\frac{\partial y_{i j}}{\partial q_{i j k}}=y_{i j}\left(\frac{q_{i j k}^{1-1 / \rho}}{\sum_{l=1}^{K} q_{i j l}^{1-1 / \rho}}\right) q_{i j k}^{-1}
$$

Replacing demand in the objective function, gets the following first order condition with respect to $q_{i j k}$

$$
P_{i}\left(c_{i}^{1 / \eta}\right)\left[\left(\frac{\rho-1}{\rho}\right) q_{i j k}^{-1 / \rho} y_{i j}^{1 / \rho-1 / \eta}+q_{i j k}^{-1 / \rho}\left(\frac{1}{\rho}-\frac{1}{\eta}\right) y_{i j}^{1 / \rho-1 / \eta-1} \frac{\partial y_{i j}}{\partial q_{i j k}}\right]=M C_{i j k} .
$$

By replacing the partial derivative of sectoral output with respect to firm k^{\prime} s output, and the demand for sectors, the previous equation can be written as

$$
\left(\frac{\rho-1}{\rho}\right) P_{i j k}+\left(\frac{1}{\rho}-\frac{1}{\eta}\right) P_{i j k}\left(\frac{q_{i j k}^{1-1 / \rho}}{\sum_{l=1}^{K} q_{i j l}^{1-1 / \rho}}\right)=M C_{i j k} .
$$

Note that

$$
\begin{aligned}
P_{i j k} q_{i j k} & =P_{i}\left(c_{i}^{1 / \eta}\right)\left(q_{i j k}^{1-1 / \rho}\right)\left(y_{i j}^{1 / \rho-1 / \eta}\right) \\
\sum_{l=1}^{K} P_{i j l} q_{i j l} & =P_{i}\left(c_{i}^{1 / \eta}\right)\left(y_{i j}^{1 / \rho-1 / \eta}\right) \sum_{l=1}^{K} q_{i j l}^{1-1 / \rho},
\end{aligned}
$$

so $\frac{q_{i j k}^{1-1 / \rho}}{\sum_{l=1}^{K} q_{i j l}^{1-1 / \rho}}=\frac{P_{i j k} q_{i j k}}{\sum_{l=1}^{K} P_{i j l} q_{i j l}} \equiv s_{i j k}$, which is the market share of firm k in its sector. With this, the first order condition can be simplified to

$$
\left(\frac{\rho-1}{\rho}\right) P_{i j k}+\left(\frac{1}{\rho}-\frac{1}{\eta}\right) P_{i j k} s_{i j k}=M C_{i j k} \Rightarrow P_{i j k}=\left[\frac{\eta(\rho-1)+s(\eta-\rho)}{\eta \rho}\right]^{-1} M C_{i j k},
$$

which can be shown is the same as equation (15) in the paper.

2 An alternative derivation from Heise et.al (2022)

Consider an economy composed by (a finitite number of) S sectors indexed by s. Production is carried out by a competitive firm combining output from a continuum of industries $k \in[0,1]$, with a technology ${ }^{1}$

$$
Y_{s}=\left(\int_{0}^{1} y_{s}(k)^{\frac{\sigma-1}{\sigma}} d k\right)^{\frac{\sigma}{\sigma-1}}
$$

The problem of this producer generates the following demand and price index

$$
y_{s}(k)=\left(\frac{p_{s}(k)}{P_{s}}\right)^{-\sigma} Y_{s} \quad \text { and } \quad P_{s}=\left(\int_{0}^{1} p_{s}(k)^{1-\sigma} d k\right)^{\frac{1}{1-\sigma}}
$$

Each industry is populated by finite number of firms, $N_{s}(k)$, which are indexed by i. (In what follows, $N_{s}(k)=N$ for simplicity.) The industry-specific aggregator takes the form

$$
y_{s}(k)=\left(\sum_{i=1}^{N} y_{s}(k, i)^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} .
$$

Therefore, the demand for variety (k, i) and the price index are

$$
y_{s}(k, i)=p_{s}(k, i)^{-\eta} p_{s}(k)^{\eta-\sigma} P_{s}^{\sigma} Y_{s} \quad \text { and } \quad p_{s}(k)=\left(\sum_{i=1}^{N} p_{s}(k, i)^{1-\eta}\right)^{\frac{1}{1-\eta}} .
$$

Each firm produces with a Cobb-Douglas technology $y=A l^{\alpha} k^{1-\alpha}$, such that the marginal cost is

$$
c_{s}(k, i)=\frac{1}{A} w^{\alpha} r^{1-\alpha} .
$$

[^0]Market structure and demand elasticity. The key assumption, as in Atkenson and Burstein (2008), is that varieties are more substitutible across firms in the same industry than across industries, $\eta>\sigma>1$. Firms compete under Bertrand competition, taking as given the prices chosen by other firms when setting their price, and taking as given input costs. Since there is only a finite number of firms, each firm takes into account the effect of its price setting on the price index $p_{s}(k)$.
Define the effective demand elasticity for a firm as

$$
\mathcal{E}_{s}(k, i) \equiv-\frac{d \log y_{s}(k, i)}{d \log p_{s}(k, i)}=\eta-(\eta-\sigma) \frac{d \log p_{s}(k)}{d \log p_{s}(k, i)} .
$$

From the definition of the price index

$$
\log p_{s}(k)=\frac{1}{1-\eta} \log \left(\sum_{i=1}^{N} \exp \left[(1-\eta) \log p_{s}(k, i)\right]\right) \Rightarrow \quad \frac{d \log p_{s}(k)}{d \log p_{s}(k, i)}=\frac{p_{s}(k, i)^{1-\eta}}{\sum_{i^{\prime}=1}^{N} p_{s}\left(k, i^{\prime}\right)^{1-\eta}}
$$

On the other hand, define the market share of a firm as $\varphi_{s}(k, i)=p_{s}(k, i) y_{s}(k, i) /\left(\sum_{i^{\prime}=1} p_{s}\left(k, i^{\prime}\right) y_{s}\left(k, i^{\prime}\right)\right)$. Replacing the effective demand in the latter expression, we have

$$
\varphi_{s}(k, i)=\frac{p_{s}(k, i)^{1-\eta}}{\sum_{i^{\prime}=1}^{N} p_{s}\left(k, i^{\prime}\right)^{1-\eta}} .
$$

Therefore, the effective demand elasticity can be written as

$$
\mathcal{E}_{s}(k, i)=\eta-(\eta-\sigma) \varphi_{s}(k, i)=\eta\left[1-\varphi_{s}(k, i)\right]+\sigma \varphi_{s}(k, i) .
$$

Thus, the firm's demand elasticity is a weighted average of the within-industry and across-industry elasticities of substitution.

Price setting. The firm's profix maximization problem is

$$
\begin{aligned}
\max _{p_{s}(k, i)}\left[p_{s}(k, i)-c_{s}(k, i)\right] y_{s}(k, i) & =\max _{p_{s}(k, i)}\left[p_{s}(k, i)-c_{s}(k, i)\right] p_{s}(k, i)^{-\eta} p_{s}(k)^{\eta-\sigma} p_{s}^{\sigma} Y_{s} \\
& =\max _{p_{s}(k, i)}\left[p_{s}(k, i)^{1-\eta} p_{s}(k)^{\eta-\sigma}-c_{s}(k, i) p_{s}(k, i)^{-\eta} p_{s}(k)^{\eta-\sigma}\right] P_{s}^{\sigma} Y_{s}
\end{aligned}
$$

The first-order condition reads as

$$
\left[(1-\eta) p_{s}(k, i)^{-\eta}+c_{s}(k, i) \eta p_{s}(k, i)^{-\eta-1}\right] p_{s}(k)^{\eta-\sigma}+(\eta-\sigma) p_{s}(k, i)^{-\eta} p_{s}(k)^{\eta-\sigma-1} \frac{d p_{s}(k)}{d p_{s}(k, i)}\left(p_{s}(k, i)-c_{s}(k, i)\right)=0 .
$$

Note, however, that $\frac{d p_{s}(k)}{d p_{s}(k, i)}=\left(\frac{p_{s}(k)}{p_{s}(k, i)}\right)^{\eta}$ and $\varphi_{s}(k, i)=\left(\frac{p_{s}(k, i)}{p_{s}(k)}\right)^{1-\eta}$. Replacing in the first-order condition and re-ordering

$$
p_{s}(k, i)=\frac{\eta-(\eta-\sigma) \varphi_{s}(k, i)}{(\eta-1)-(\eta-\sigma) \varphi_{s}(k, i)} c_{s}(k, i)=\frac{\mathcal{E}_{s}(k, i)}{\mathcal{E}_{s}(k, i)-1} c_{s}(k, i)=\mathcal{M}_{s}(k, i) c_{s}(k, i) .
$$

[^0]: 1"The missing inflation puzzle: The role of the wage-price pass-through" by Sebastian Heise, Fatih Karahan and Aysegul Sahin. See paper at https://www.nber.org/system/files/working_papers/w27663/w27663.pdf.

