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Our goal is to derive the stochastic discount factor (SDF) when the representative agent has Epstein-Zin
(EZ) preferences.1

1 Preliminaries

In general, an individual has recursive preferences if utility satisfies the recursion

Vt = F(Ct, R(Vt+1)),

where R(·) is a function performing a risk adjustment that helps to compute the certain equivalence
of future utility, and F(·) is a time aggregator capturing preferences over the timing of consumption.
Note that a particular case would be the one of time separable utility, which can be written as Vt =

u(Ct) + βEt(Vt+1), for some function u(·).

The EZ preferences are a particular case of recursive preferences in which there is a CES time aggregator
and CRRA risk adjustment. Letting u(Ct) to be the utility flow of consumption and Vt the lifetime
expected utility, then we have

Vt = Et

∞

∑
j=0

u(Ct+j) = u(Ct) + βEt(Vt+1). (1)

Writing Eq. (1) in CES form

Vt =

[
(1 − β)u(Ct)

1−ρ + β
(

Et(Vt+1)
1−ρ

)] 1
1−ρ

,

where ρ is the inverse of the intertemporal elasticity of substitution, and applying the CRRA risk adjust-
ment

Vt =

[
(1 − β)u(Ct)

1−ρ + β
(

Et(V
1−γ
t+1 )

1−ρ
1−γ

)] 1
1−ρ

, (2)

we get the EZ recursion. There are three observations about Eq. (2)
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1. The standard CRRA case follows when γ = ρ.

2. The recursion is well defined if u(·) ≥ 0 everywhere and Vt ≥ 0. If that is not the case so u(·) ≤ 0
holds, we let Vt ≤ 0 and define the recursion as

Vt =

[
(1 − β)u(Ct)

1−ρ − β
(

Et(−{Vt+1}1−γ)
1−ρ
1−γ

)] 1
1−ρ

.

3. The case γ > ρ corresponds to a preference for early resolution of uncertainty.

2 Deriving the SDF

Note that Eq. (2) can be written as

Vt = F(Ct, R(Vt+1)) =

[
(1 − β)u(Ct)

1−ρ + β
(

R(Vt+1)
)1−ρ)] 1

1−ρ

, (3)

with R(Vt+1) =
(

Et(V
1−γ
t+1 )

) 1
1−γ

.
The partial derivative with respect to current consumption is

∂Vt

∂Ct
= (1 − β)

(
Vt

Ct

)ρ

.

On the other hand, the partial derivative with respect to future consumption is a highly nonlinear object.
Therefore, we proceed with the following chain of partial derivatives

∂Vt

∂Ct+1
=

∂Vt

∂R(Vt+1)
× ∂R(Vt+1)

∂V1−γ
t+1

×
∂V1−γ

t+1

∂Vt+1
× ∂Vt+1

∂Ct+1

with

∂Vt

∂R(Vt+1)
= β

(
Vt

R(Vt+1)

)ρ

∂R(Vt+1)

∂V1−γ
t+1

=
∂
(

Et(V
1−γ
t+1 )

) 1
1−γ

∂Et(V
1−γ
t+1 )

×
∂Et(V

1−γ
t+1 )

∂V1−γ
t+1

×
∂V1−γ

t+1

∂Vt+1

=
1

1 − γ
R(Vt+1)

γ × 1 × (1 − γ)V−γ
t+1 =

(
R(Vt+1)

Vt+1

)γ

∂V1−γ
t+1

∂Vt+1
= (1 − γ)V−γ

t+1

∂Vt+1

∂Ct+1
= (1 − β)

(
Vt+1

Ct+1

)ρ

,

where the last expression uses the partial derivative with respect to current consumption, iterated one
period forward.
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Combining all the previous elements we have

∂Vt

∂Ct+1
= β(1 − β)Vρ

t C−ρ
t+1

(
Vt+1

R(Vt+1)

)ρ−γ

.

The SDF between period t and t + 1 reads as

Mt,t+1 =
∂Vt/∂Ct+1

∂Vt/∂Ct

Mt,t+1 = β

(
Ct+1

Ct

)−ρ

 Vt+1(
Et(V

1−γ
t+1 )

) 1
1−γ


ρ−γ

.
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